NMR of Biomolecules: Towards Mechanistic Systems Biology by Ivano Bertini, Kathleen S. McGreevy, Giacomo Parigi

By Ivano Bertini, Kathleen S. McGreevy, Giacomo Parigi

NMR is likely one of the strongest tools for imaging of biomolecules. This publication is the final word NMR advisor for researchers within the biomedical neighborhood and offers not just heritage and sensible information but additionally a ahead taking a look view at the way forward for NMR in platforms biology.Content:
Chapter 1 NMR and its position in Mechanistic platforms Biology (pages 1–5): Prof. Dr. Ivano Bertini, Kathleen S. McGreevy and Prof. Giacomo Parigi
Chapter 2 constitution of Biomolecules: basics (pages 7–32): Lucia Banci, Francesca Cantini, Mirko Cevec, Hendrik R. A. Jonker, Senada Nozinovic, Christian Richter and Harald Schwalbe
Chapter three What may be discovered in regards to the constitution and Dynamics of Biomolecules from NMR (pages 33–50): Lucio Ferella, Antonio Rosato, Paola Turano and Janez Plavec
Chapter four selection of Protein constitution and Dynamics (pages 51–94): Lucio Ferella, Antonio Rosato and Paola Turano
Chapter five DNA (pages 96–116): Janez Plavec
Chapter 6 RNA (pages 118–135): Richard Stefl and Vladimir Sklenar
Chapter 7 Intrinsically Disordered Proteins (pages 136–152): Isabella C. Felli, Roberta Pierattelli and Peter Tompa
Chapter eight Paramagnetic Molecules (pages 154–171): Ivano Bertini, Claudio Luchinat and Giacomo Parigi
Chapter nine NMR Methodologies for the research of Protein–Protein Interactions (pages 173–194): Tobias Madl and Michael Sattler
Chapter 10 Metal?Mediated Interactions (pages 196–203): Simone Ciofi?Baffoni
Chapter eleven Protein–Paramagnetic Protein Interactions (pages 204–217): Peter H. J. Keizers, Yoshitaka Hiruma and Marcellus Ubbink
Chapter 12 Protein–RNA Interactions (pages 218–236): Vijayalaxmi Manoharan, Jose Manuel Perez?Canadillas and Andres Ramos
Chapter thirteen Protein–DNA Interactions (pages 238–252): Lidija Kovacic and Rolf Boelens
Chapter 14 High?Throughput Screening and Fragment?Based layout: basic concerns for Lead Discovery and Optimization (pages 253–263): Maurizio Pellecchia
Chapter 15 Ligand?Observed NMR in Fragment?Based ways (pages 264–280): Pawel Sledz, Chris Abell and Alessio Ciulli
Chapter sixteen Interactions of Metallodrugs with DNA (pages 282–296): Hong?Ke Liu and Peter J. Sadler
Chapter 17 RNA as a Drug aim (pages 298–313): Jan?Peter Ferner, Elke Duchardt Ferner, Jorg Rinnenthal, Janina dollar, Jens Wohnert and Harald Schwalbe
Chapter 18 Fluorine NMR Spectroscopy for Biochemical Screening in Drug Discovery (pages 314–327): Claudio Dalvit
Chapter 19 NMR of Peptides (pages 328–344): Johannes G. Beck, Andreas O. Frank and Horst Kessler
Chapter 20 Biomolecular Solid?State NMR/Basics (pages 345–364): Emeline Barbet?Massin and Guido Pintacuda
Chapter 21 Protein Dynamics within the good kingdom (pages 366–375): Jozef R. Lewandowski and Lyndon Emsley
Chapter 22 Microcrystalline Proteins – an excellent Benchmark for method improvement (pages 376–392): W. Trent Franks, Barth?Jan van Rossum, Benjamin Bardiaux, Enrico Ravera, Giacomo Parigi, Claudio Luchinat and Hartmut Oschkinat
Chapter 23 Structural reviews of Protein Fibrils through Solid?State NMR (pages 394–405): Anja Bockmann and Beat H. Meier
Chapter 24 Solid?State NMR on Membrane Proteins: tools and purposes (pages 406–417): A. A. Cukkemane, M. Renault and M. Baldus
Chapter 25 Dynamic Nuclear Polarization (pages 419–431): Thomas F. Prisner
Chapter 26 13C Direct Detection NMR (pages 432–443): Isabella C. Felli and Roberta Pierattelli
Chapter 27 rushing up Multidimensional NMR facts Acquisition (pages 444–465): Bernhard Brutscher, Dominique Marion and Lucio Frydman
Chapter 28 Metabolomics (pages 466–477): Leonardo Tenori
Chapter 29 In?Cell Protein NMR Spectroscopy (pages 478–494): David S. Burz, David Cowburn, Kaushik Dutta and Alexander Shekhtman
Chapter 30 Structural research of Cell?Free Expressed Membrane Proteins (pages 496–508): Solmaz Sobhanifar, Sina Reckel, Frank Lohr, Frank Bernhard and Volker Dotsch
Chapter 31 Grid Computing (pages 509–518): Antonio Rosato
Chapter 32 Protein–Protein Docking with HADDOCK (pages 520–535): Christophe Schmitz, Adrien S. J. Melquiond, Sjoerd J. de Vries, Ezgi Karaca, Marc van Dijk, Panagiotis L. Kastritis and Alexandre M. J. J. Bonvin
Chapter 33 computerized Protein constitution choice tools (pages 536–546): Paul Guerry and Torsten Herrmann
Chapter 34 NMR constitution choice of Protein–Ligand Complexes (pages 548–561): Ulrich Schieborr, Sridhar Sreeramulu and Harald Schwalbe
Chapter 35 Small attitude X?Ray Scattering/Small perspective Neutron Scattering as tools Complementary to NMR (pages 562–574): M. V. Petoukhov and D. I. Svergun

Show description

Read or Download NMR of Biomolecules: Towards Mechanistic Systems Biology PDF

Similar biology & life sciences books

The Chemistry of Life

PROFESSOR ROSE'S famous paintings IS AN critical spouse FOR an individual attracted to THIS box.

Biologie für Einsteiger: Prinzipien des Lebens verstehen

Leben ist ein äußerst komplexes Phänomen und läuft doch vom winzigen Bakterium bis zum studierenden Menschen stets nach den gleichen Prinzipien ab. Die Einführung in die Biologie erschließt Kapitel für Kapitel diese grundlegenden Mechanismen und Strukturen. Mit ihrem modernen didaktischen Konzept legt die Einführung in die Biologie dabei auf völlig neue Weise den Schwerpunkt auf die Vermittlung eines wirklichen Verständnisses für die Abläufe in Zellen und Organismen.

Extra resources for NMR of Biomolecules: Towards Mechanistic Systems Biology

Sample text

Tertiary and quaternary structures are represented by the monomer and the dimer of the human Cu,Zn superoxide dismutase (PDB ID: 1L3N), respectively. 1 Backbone Dihedral Angles A dihedral angle is defined as the angle between two planes and therefore involves three chemical bonds between four atoms. The line of intersection between the two planes is defined by the bond between the second and third atom of the set. A dihedral angle can also be defined as the angle at which one plane needs to be rotated about the line of intersection in order to align with the other plane.

NMR is especially important when the interactions are weak and the interacting species are in fast exchange. The interacting molecules can be observed and it is often possible to intervene in the interaction. Furthermore, NMR is not yet a mature science – it must still develop in the field of membrane proteins and immobilized (though not necessarily crystalline) forms, and must extend its investigative power to larger biomolecules. NMR is a technique capable of monitoring single nuclei. The initial information comes from the chemical shift – the resonance frequency when the substance and the nucleus are in a magnetic field.

In this case the second amino acid of the loop is located in the positive w region of the Ramachandran plot and is therefore often a Gly residue, while the first amino acid takes a conformation typical of an a-helix. Another common structural motif is the b-hairpin, which involves a b-turn connecting two antiparallel consecutive b-strands. 3), which indeed have the correct geometry to produce the twist of the b-sheet. In b-hairpins with a type I0 turn, the first residue adopts a left-handed a-helical conformation; for this reason, the favored residues in this position are Gly, Asp, or Asn.

Download PDF sample

Rated 4.67 of 5 – based on 37 votes